2024届衡水金卷先享题 压轴卷(新高考无角标)数学(一)1答案正在持续更新,目前2024天舟益考答案网为大家整理了相关试题及答案,供大家查缺补漏,高效提升成绩。
本文从以下几个角度介绍。
1、衡水金卷先享题答案2024数学全国二卷
2、衡水金卷先享题2023-2024高三一轮数学二
3、衡水金卷先享题压轴卷2024理科数学一
4、衡水金卷先享题2024文数四
5、衡水金卷先享题压轴卷2024数学二新高考
6、2024衡水金卷先享题压轴卷数学试题(一)
7、衡水金卷先享题压轴卷2024文科数学二
8、衡水金卷先享题2023-2024高三一轮数学答案
9、2024年衡水金卷先享题压轴卷数学(一)试题答案
10、衡水金卷先享题2023-2024高二数学
数学(一)1答案)
又因为P(x0,)为C上一点且在第一象限,所以+6=工,=()9联5每得5放B正病验水因器套赠,国从而P,=a+&=5+5,所以A=PR,-PA=3+5,公e1)2所以AF=CP:=3+5,面0F,1=3,所以1(5,1),故C错误:,意由《【)翻从面石行:专故D正晚1r11.ABC【解析】如图,连接AD,BC1,B,C,则ADOAD,=E,由正方体的性质可得点E是侧面ADD,A,的中心,点M是正方体的中心,所以连接EM并延长交侧面BCC,B于点P,则点P是侧面BCC,B,的中心,且PE∥AB.设平面EPN交AD,于点F,交AD于点G,交BC于点H,连接,G阻,因为平面ABC∥平面A,B,CD1,所以GH∥NP,CH=-NF因为PE∥AB,ABC平面ABCD,所以PE∥平面ABCD,第11题图又GHC平面ABCD,所以PE∥GH,所以AB∥GH,易知AB⊥HN,所以GH⊥HN,所以平面EMW截正方体得到的截面多边形NFG狃是矩形,A正确;因为点M是正方体的中心,所以D,M,B三点共线,所以平面AD,M即为平面ABC,D,÷01因为BC1⊥B,C,AB⊥B1C,AB∩BC1=B,AB,BC,C平面ABC,D1,所以B,C⊥平面ABC,D,+等显门式园又B,CC平面AB,C,所以平面AB,C⊥平面ABC,D,即平面AB1C⊥平面ADM,B正确;当A=1时,点N与点C,重合,平面EMN即为平面ABC,D1,由B选项可知平面AB,CL平面ABC,D,即平面AB,C⊥平面EMN,C正确;,N当A=号时,GN=阳=子BC=分则m=AG=子D=子(2)3又6-2√2+(T2小×之2E2×00=.映订第服由(1)瑞3,随10=急事测心感谢,的范关事则所以裁面多边形NGH的面积为2×2①_4,D错误33这落年火区,静要比年卧火:对(1三、填空题12.4【解析】设M(,),由子=8x,得p=4,所以M=6=+2,解得,=4-{13.3630【解析】由数列{a.的前n项和S,=2a.+n-3,A989当n≥2时,可得S.-1=2a-1+(n-1)-3,昆县干大负在将河两式相减,可得a,=S。-S-1=2a,+n-3-2a。-1-(n-1)+3=2a,-2a-1+1,(1)即a.=20-1-1,即a.-1=2(a.-1-1),当n=1时,4=8,=24-2,可得4=2,所以69f-1,054家009(所以数列[a.-1是以1为首项,以2为公比的等比数列,所以4,一1=2,中任0的,的贫宝,点中00原则6,=log,(a,-1)=lg2-=log4学=号(a-10,所藏,南葡11球有为20如:士×9±22=3630.±、214【解析1本题考套全概率公式,记A:该运动员10米比赛未获得奖牌,B:该运动员200米比赛未获得奖
本文标签: